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This paper studies a laminar steady boundary layer on a rotating body 
with a porous contour at an axisymmetrical compressible fluid flow. The 
ionized gas flows in the conditions of equilibrium dissociation. The 
momentum equation of the considered flow problem is obtained. First, the 
primary porosity parameter and then the corresponding set of porosity 
parameters are defined. It has been shown that the general similarity 
method in V. N. Saljnikov's version can be applied after introduction of 
necessary purposeful transformations. 
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1. INTRODUCTION 
 
Development of technology brought about complex 
problems of boundary layer flow, which had to be 
solved. At the same time, with advancement of science, 
investigators developed different methods for solution 
of complex flow problems, i.e. methods for solution of 
the corresponding equation systems. Mathematical 
models of boundary layer flow problems of 
homogenous incompressible or compressible fluid, 
especially dissociated and ionized gas, are very complex 
equation systems. These are the systems of nonlinear 
partial simultaneous equations whose solutions cannot 
be obtained in a general closed analytic form [1, 2]. 

It is, therefore, understandable that investigators, 
while considering these boundary layer flow problems, 
first looked for the ways to transform the corresponding 
partial equations to a system of simple differential 
equations. This way the so called similar i.e. auto-model 
solutions were obtained. Using special transformations 
of variables [2], partial differential equations are 
brought into a system of simple differential equations.    

After the so called parametric methods [2], a general 
similarity method was developed [3]. This method was 
successfully applied to solution of MHD boundary layer 
flow problems [4], as well as to solution of dissociated 
and ionized gas flow problems [5, 6]. Nowadays, 
general similarity method is mainly used or, 
alternatively, the corresponding equations are directly 
numerically solved. 

The application of the general similarity method for 
solution of boundary layer equations of different flow 
problems is based on the use of the momentum equation  
and the use of the corresponding sets of parameters. 
These parameters represent the so called similarity 
parameters. The corresponding transformations of 

physical quantities are also introduced. This way, the 
governing equation system is transformed into a form 
which is independent from the given velocity 
distribution on the outer edge of the boundary layer.  

When this modern method is applied to different 
problems of compressible fluid flow (dissociated or 
ionized gas), the corresponding previous trans-
formations are followed by general similarity 
transformations. As shown in details in [7], by means of 
the previous transformations the dynamic equation of 
the compressible fluid boundary layer is brought to the 
same form as the corresponding equation of 
incompressible fluid.  

 In this paper, we derive the momentum equation of 
the boundary layer on a rotating body with a porous 
contour when dissociated gas flows in the conditions of 
equilibrium dissociation. A set of porosity parameters of 
the considered problem is also defined. The paper is a 
part of our current broader investigations, the goal of 
which is to apply the general similarity method to a 
dissociated gas boundary layer on rotating bodies and to 
solve the obtained system of generalized equations. 

   
 

2. GOVERNING EQUATIONS 
 
In order to derive the momentum equation when 
dissociated gas flows along rotating bodies (Fig. 1), as 
with other cases of fluid flow, we start from the 
continuity equation and from the corresponding 
boundary layer dynamic equation. For the considered 
case of axisymmetrical flow in the boundary layer, a 
completely new equation system (with the 
corresponding boundary conditions [9, 10]) has the 
following form: 
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The given equations represent the continuity 
equation, dynamic and energy equation, respectively, in 
which the function ),( hpl  depends on Lewis number 
Le and on the enthalpy of the atomic and molecular 
component of the equilibrium dissociated gas [10]. 

 

Figure 1. The dissociated gas flow along the rotating body 

In the equations of the system (1) the usual notation 
in the boundary layer theory is used for physical 
quantities. The symbols stand for: x - the longitudinal 
coordinate measured along the contour of the body, y - 
transversal coordinate perpendicular to the contour of 
the body, ),( yxu  - longitudinal projection of the 
velocity in the boundary layer, ),( yxv  - transversal 
projection,  ρ  - density, h - enthalpy, µ - dynamic 
viscosity. In the system (1) Pr denotes Prandtl number, 
while  )(xrr =  represents the radius of the cross section 
of the rotating body which is perpendicular to the 
rotating axis. Therefore, the contour of the body is given 
by the function ).(xr  The subscript e stands for physical 
quantities at the outer edge of the boundary layer, while 
the subscript w denotes the quantities on the wall of the 
body within the fluid. Therefore, )(xvw  denotes the 
given velocity at which gas flows perpendicularly 
through the solid porous wall 0( >wv  or ).0<wv  
Everywhere on the body, the thickness of the boundary 
layer ( )xδ  is assumed to be significantly less than the 
radius of the rotating body, i.e. r<<δ . Therefore, this 
thickness can be ignored compared to the radius of cross 
section of the body. This assumption cannot be applied 
to long thin bodies [9, 12].    

For the planar steady flow of equilibrium dissociated 
compressible fluid in the boundary layer, the 
corresponding equation system, as known [10], differs 

only in the continuity equation. This equation does not 
contain the radius )(xr  of the cross section of the 
rotating body. Hence, for both flows, the continuity 
equation can be written in a more general form 

( ) ( ) 0j jur vr
x y
ρ ρ∂ ∂

+ =
∂ ∂

,                 (2) 

where 0=j  for the planar and 1=j  for the 
axisymmetrical flow. 

In order to derive the momentum equation of the 
considered flow problem, the same procedure as with 
the incompressible flow is performed. The continuity 
equation (2) is multiplied by )(xue  while the dynamic 

equation is multiplied by r, i.e., by )(xrr jj = . Then, 
subtracting these equations, we get a new one that is 
integrated from the inner to the outer edge of the 
boundary layer. New variables are introduced and the 
equation of the form d / d /ot eZ s F u∗∗ =  is obtained. 
However, in this equation, not all the terms of the so 
called characteristic function otF  are nondimensional. 
This phase of investigation has shown that we should 
start with the continuity equation written in a more 
general form 
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which for the axisymmetrical flow )1( =j  and 
constL =  comes down to the first equation of the 

system (1). In that equation, L is a characteristic 
constant length (and at the numerical calculation we can 
take that 1=L  [11]). 
 
 
3. MOMENTUM EQUATION OF THE CONSIDERED 

FLOW PROBLEM 
 
If the continuity equation of the form (3) is multiplied 
by the velocity )(xue  at the outer edge of the boundary 
layer, we will obtain  
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The dynamic equation of the governing system (1), 
after multiplication by jLr )/(  and based on the 
continuity equation (3), comes down to 

d
.

d

j j

j j
e

e e

r ru u v u
x L y L

ur r uu
L x L y y

ρ ρ

ρ µ

   ∂ ∂     +   =   ∂ ∂         

 ∂ ∂   = +      ∂ ∂     

         (5) 



 FME Transactions VOL. 35, No 2, 2007  ▪  65

Subtracting the equation (5) from the equation (4), we 
obtain that  
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When the previous equation, as with incompressible 
fluid, is multiplied by dy  and integrated 
perpendicularly to the boundary layer from the inner 

)0( =y  to the outer edge of the boundary layer 
)( ∞→y  we will obtain an equation in the form of a 

sum of integrals:  
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Taking into consideration the possibility of changing the 
order of the two operations - integration and 
differentiation, and bearing in mind the boundary 
conditions (1), the previous equation can be written as:  
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In order to obtain the simplest form of the momentum 
equation, which would be formally the same as the 
corresponding momentum equation in incompressible 
fluid, it is necessary, for further solution of the integrals 
in the equation (6), to introduce new variables instead of  
physical coordinates x and y. The methodology of 
introduction and the necessity of these transformations 
are explained in details in [7]. Since this paper studies 
the axisymmetrical flow of dissociated gas, a new 
longitudinal variable )(xs  and a new transversal 
variable ),( yxz  are introduced in the form of relations 
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In the transformations (7), 0ρ  and 0µ  denote arbitrary 
known values of the density and dynamic viscosity at a 
certain point of the boundary layer, while wρ  and wµ  
are the given values of these quantities at the inner edge 

of the boundary layer. Krivtsova used these 
transformations in her studies ([10] for 0=j  and [11] 
for 0≠j ), for the case of a nonporous contour of the 
body within the fluid. 

We should point out that due to the factor 2)/( Lr  
and Lr /  (for 1=j ), these new previous variables (7) 
also contain Mangler-Stepanov's transformations [8]. 
Otherwise, transformations (7) without these factors are 
known in the literature as Dorodnicin's transformations 
modified by Lees [10]. 

Since, in some terms of the equation (6), the 
integration is performed transversally to the boundary 
layer, the variable z changes only due to the change of 
the coordinate y (for any x). Therefore, by means of the 
newly introduced variables (7), the equation (6) is 
brought to the form:  
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in which the conditional displacement thickness )(s∗∆ , 

conditional momentum loss thickness )(s∗∗∆  and 
nondimensional friction function )(sζ  are determined in 
the form of the known expressions 
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After differentiation and multiplication of the equation 
(8) by 2

02 / eu∆ ν∗∗  0 0 0( / )µ ρ ν=  , we will obtain the 
equation: 
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When, as with homogenous or electroconductive liquid 
or other cases of compressible fluid flow, we introduce 
the parameter of the form f and widely accepted 
notations for physical quantities in the theory of the 
boundary layer: 
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the equation (10) can be written in its final form 
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In the obtained momentum equation, the characteristic 
function of the boundary layer otF  is determined as 
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For 0=j , this function is the same as the function dpF  
at the planar flow [7]. In the case of a boundary layer 
flow along a nonporous wall ( 0)wv = , the expression 
for the characteristic function otF  comes down to the 
same form as the known expression [2], which 
corresponds to incompressible fluid flow ).( FFot =  
Furthermore, by means of (11), the momentum equation 
(12) can be written in its two forms 

1
d , , ( ).
d 2

e e e ot
ot

e e e

u u u Ff F f f f
s u u u f

∆
∆

′∗∗

∗∗

′ ′′ ′
= + = =

′
 (14) 

They are formally the same as the corresponding forms 
of this equation for incompressible fluid (where ' stands 
for a derivation per s).  

If with the axisymmetrical flow of compressible 
fluid, we define the porosity parameter in the following 
way: 
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the characteristic boundary layer function otF  can be 
written as the final expression: 

( )2 2 2 .otF H fζ Λ= − + −                   (16) 

It is obvious that the obtained expression (16) is 
formally the same as the corresponding expression for 
the characteristic function of incompressible fluid [2]. 
The defined parameter characterizes injection or 
ejection of the dissociated gas in the boundary layer. 
The expression for this parameter can be written in the 
form of   
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where )(sVw  can be called the conditional injection 
velocity. 

 
 

4. INTRODUCTION OF A SET OF POROSITY 
PARAMETERS OF LOITSIANSKII TYPE 

 
As already stated in the Introduction, the general 
similarity method is based on the use of the appropriate 
sets of parameters of Loitsianskii type. Therefore, in this 
section we will define a set of porosity parameters at the 

axisymmetrical flow along a porous contour of the 

rotating body. Because of the relation 
2
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defined by the expression 
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Accepting the second addend in the brackets of the 
previous equation as a new parameter  2 ,Λ                       
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If by a usual Loitsianskii procedure, as with other fluid 
flow problems, the parameter 2Λ  is differentiated per 
the variable s, we will get the equation  
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in which 3Λ  denotes the third porosity parameter 
determined by the expression 
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By differentiation of the parameter 3Λ  per the variable 
s we will obtain the corresponding equation 
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represents a new parameter. 
According to the shown procedure, it is clear that the 

general porosity parameter ( )k sΛ  can be written in the 
form of the expression 
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Furthermore, each of the parameters of the previous set, 
as concluded in our analysis, satisfies a recurrent 
differential equation 
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This equation can be also written as 
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At the end of this section, it should be pointed out that 
the set of porosity parameters kΛ  (18), defined in this 
paper is formally the same as the corresponding set of 
parameters in the case of the incompressible fluid flow 
[2]. The corresponding recurrent relations (19) also have 
the same form. Obviously, the porosity parameters 
given in this paper are a function of a newly introduced 
variable s instead of the physical variable x (which is the 
case with incompressible fluid flow). Defining of a set 
of porosity parameters (18) creates a possibility to apply 
the general similarity method to the considered flow 
problem, i.e. to bring the governing equations to the so 
called generalized form and to solve them numerically. 
 
 
5. TRANSFORMATION OF THE GOVERNING 

EQUATIONS  
 
Transformations of the variables (7) should be applied 
to the boundary layer equations system of the 
dissociated gas flow on the rotating bodies, i.e. to the 
continuity equation (3) and to the dynamic and energy 
equations of the system (1) with the corresponding 
boundary conditions. As with other flow problems, a 
stream function ( , )x yψ  is introduced. The form of the 
continuity equation (3) suggests that the stream function 
should be introduced by the following relations: 
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These relations also come from the continuity equation 
of this compressible fluid flow problem. Note that the 
second relation (22) for ,0=j  comes down to the 
relation Krivtsova once used in her investigations of the 
planar dissociated gas flow [10].       

Changing the variables and using the relation (22), 
the governing equation system reduces to: 
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In the obtained equations, the nondimensional 
function Q is determined as 
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6. CONCLUSION  
 
Based on the obtained equations (23), we can draw 
some conclusions important for further investigation of 
the boundary layer fluid flow. They are: 

• The obtained equations (23) are completely the 
same as the equations obtained in [10] for the planar 
problem of the dissociated gas flow. This conclusion is 
expected because it was made possible by the 
transformations (7) that contain the factors 2)/( Lr  and 

Lr / .  Obviously, the boundary conditions are different.  
• The transformed dynamic equation (23) has 

almost the identical form as the corresponding equation 
for the case of the incompressible fluid flow [2] 
expressed by means of the stream function ( , )x yψ . In 
the case of an isothermal flow of incompressible fluid 
( const., const., 1)Qρ µ= = =  these equations are 
identical. 

• Due to the boundary conditions at the outer edge 
of the boundary layer ( / ws Vψ∂ ∂ = −  for 0z = ), by 
dividing  the stream function into two addends, these 
conditions can be brought to a form that applies to a 
nonporous wall of the body within the fluid (as is the 
case with incompressible fluid [2]). 

• This paper defines a set of porosity parameters 
for the case of the dissociated gas flow along rotating 
bodies )1( =j  which enables application of the general 
similarity method (Saljnikov's version) to this compli-
cated compressible fluid flow problem. 
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In conclusion, the essential contribution of this paper 
lies in defining the primary porosity parameter Λ  (15), 
obtained from the momentum equation (13) derived in 
the paper, as well as in introduction of the 
corresponding set of parameters kΛ  (18). This set of 
parameters is a generalization of the already known set 
of parameters of Loitsianskii type for the case of 
incompressible fluid flow along a porous contour. 

Finally, we should especially point out that in our 
further investigations we will use the introduced set of 
porosity parameters (18) with the aim to apply the 
general similarity method to the considered problem of 
compressible fluid flow, i.e., to solve the generalized 
equations numerically.   
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ИМПУЛСНА ЈЕДНАЧИНА ГРАНИЧНОГ СЛОЈА  
НА ОБРТНИМ ТЕЛИМА ПРИ СТРУЈАЊУ 

ДИСОЦИРАНОГ ГАСА ПОРЕД ПОРОЗНЕ КОНТУРЕ 
 

Бранко Обровић, Слободан Савић 
 

Истражује се ламинарни стационарни гранични слој 
на обртним телима са порозном контуром при 
осносиметричном струјању стишљивог флуида. Реч 
је о струјању дисоцираног гаса у условима 
равнотежне дисоцијације. У раду је изведена 
импулсна једначина разматраног проблема струјања. 
Дефинисан је основни параметар порозности а 
затим и одговарајући скуп параметара порозности. 
Показано је да се за решавање разматраног 
проблема струјања, после увођења неопходних 
сврсисходних трансформација, може да примени 
метода уопштене сличности у верзији В. Н. 
Саљникова. 
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