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Momentum Equation of the Boundary
Layer on Rotating Bodies for the Case
of Dissociated Gas Flow Along a

Branko Obrovié Porous Contour

Professor
This paper studies a laminar steady boundary layer on a rotating body

with a porous contour at an axisymmetrical compressible fluid flow. The
ionized gas flows in the conditions of equilibrium dissociation. The
momentum equation of the considered flow problem is obtained. First, the
primary porosity parameter and then the corresponding set of porosity
parameters are defined. It has been shown that the general similarity
method in V. N. Saljnikov's version can be applied after introduction of
necessary purposeful transformations.

Slobodan Savi¢
Assistant Professor

Faculty of Mechanical Engineering
University of Kragujevac

Keywords: Boundary layer, axisymmetrical flow, momentum equation,

porosity parameter, general similarity method.

1. INTRODUCTION

Development of technology brought about complex
problems of boundary layer flow, which had to be
solved. At the same time, with advancement of science,
investigators developed different methods for solution
of complex flow problems, i.e. methods for solution of
the corresponding equation systems. Mathematical
models of boundary layer flow problems of
homogenous incompressible or compressible fluid,
especially dissociated and ionized gas, are very complex
equation systems. These are the systems of nonlinear
partial simultaneous equations whose solutions cannot
be obtained in a general closed analytic form [1, 2].

It is, therefore, understandable that investigators,
while considering these boundary layer flow problems,
first looked for the ways to transform the corresponding
partial equations to a system of simple differential
equations. This way the so called similar i.e. auto-model
solutions were obtained. Using special transformations
of wvariables [2], partial differential equations are
brought into a system of simple differential equations.

After the so called parametric methods [2], a general
similarity method was developed [3]. This method was
successfully applied to solution of MHD boundary layer
flow problems [4], as well as to solution of dissociated
and ionized gas flow problems [5, 6]. Nowadays,
general similarity method is mainly used or,
alternatively, the corresponding equations are directly
numerically solved.

The application of the general similarity method for
solution of boundary layer equations of different flow
problems is based on the use of the momentum equation
and the use of the corresponding sets of parameters.
These parameters represent the so called similarity
parameters. The corresponding transformations of
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physical quantities are also introduced. This way, the
governing equation system is transformed into a form
which is independent from the given velocity
distribution on the outer edge of the boundary layer.

When this modern method is applied to different
problems of compressible fluid flow (dissociated or
ionized gas), the corresponding previous trans-
formations are followed by general similarity
transformations. As shown in details in [7], by means of
the previous transformations the dynamic equation of
the compressible fluid boundary layer is brought to the
same form as the corresponding equation of
incompressible fluid.

In this paper, we derive the momentum equation of
the boundary layer on a rotating body with a porous
contour when dissociated gas flows in the conditions of
equilibrium dissociation. A set of porosity parameters of
the considered problem is also defined. The paper is a
part of our current broader investigations, the goal of
which is to apply the general similarity method to a
dissociated gas boundary layer on rotating bodies and to
solve the obtained system of generalized equations.

2. GOVERNING EQUATIONS

In order to derive the momentum equation when
dissociated gas flows along rotating bodies (Fig. 1), as
with other cases of fluid flow, we start from the
continuity equation and from the corresponding
boundary layer dynamic equation. For the considered
case of axisymmetrical flow in the boundary layer, a
completely new equation system (with the
corresponding boundary conditions [9, 10]) has the
following form:

%(pum%(pw):o,

W2 o, Ye OO0 (1)
p ax p ay pe e dx ay /u ay >
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The given equations represent the continuity
equation, dynamic and energy equation, respectively, in
which the function /(p,%) depends on Lewis number
Le and on the enthalpy of the atomic and molecular
component of the equilibrium dissociated gas [10].

Figure 1. The dissociated gas flow along the rotating body

In the equations of the system (1) the usual notation
in the boundary layer theory is used for physical
quantities. The symbols stand for: x - the longitudinal
coordinate measured along the contour of the body, y -
transversal coordinate perpendicular to the contour of
the body, u(x,y) - longitudinal projection of the
velocity in the boundary layer, v(x, y) - transversal
projection, p - density, 4 - enthalpy, - dynamic
viscosity. In the system (1) Pr denotes Prandtl number,
while 7»=r(x) represents the radius of the cross section
of the rotating body which is perpendicular to the
rotating axis. Therefore, the contour of the body is given
by the function r(x). The subscript e stands for physical
quantities at the outer edge of the boundary layer, while
the subscript w denotes the quantities on the wall of the
body within the fluid. Therefore, v,,(x) denotes the
given velocity at which gas flows perpendicularly
through the solid porous wall (v,,>0 or v, <0).
Everywhere on the body, the thickness of the boundary
layer 6(x) is assumed to be significantly less than the
radius of the rotating body, i.e. & <<r. Therefore, this
thickness can be ignored compared to the radius of cross
section of the body. This assumption cannot be applied
to long thin bodies [9, 12].

For the planar steady flow of equilibrium dissociated
compressible fluid in the boundary Ilayer, the
corresponding equation system, as known [10], differs

64 = VOL. 35, No 2, 2007

only in the continuity equation. This equation does not
contain the radius r(x) of the cross section of the

rotating body. Hence, for both flows, the continuity
equation can be written in a more general form

2 (purly+ L purly =0, @)
Ox Oy

where j=0 for the planar and ;=1 for the

axisymmetrical flow.

In order to derive the momentum equation of the
considered flow problem, the same procedure as with
the incompressible flow is performed. The continuity
equation (2) is multiplied by u,(x) while the dynamic
equation is multiplied by r, i.e., by r/ =/ (x). Then,
subtracting these equations, we get a new one that is

integrated from the inner to the outer edge of the
boundary layer. New variables are introduced and the

equation of the form dZ™/ds=F,,/u, is obtained.

However, in this equation, not all the terms of the so
called characteristic function F,, are nondimensional.

This phase of investigation has shown that we should
start with the continuity equation written in a more

general form
J
+§[pv&) }:o, 3)

2y

which for the axisymmetrical flow (j=1) and

L =const comes down to the first equation of the
system (1). In that equation, L is a characteristic
constant length (and at the numerical calculation we can
take that L =1 [11]).

3. MOMENTUM EQUATION OF THE CONSIDERED
FLOW PROBLEM

If the continuity equation of the form (3) is multiplied
by the velocity u,(x) at the outer edge of the boundary
layer, we will obtain

2 (2] e p 2l () ]

_ u( r jj du,
PUT) Tax
The dynamic equation of the governing system (1),

after multiplication by (r/ L) and based on the
continuity equation (3), comes down to

& e sl

. [gjf due{zjfz u
_peeL dx \L) oy 'uﬁy '

©)
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Subtracting the equation (5) from the equation (4), we
obtain that

J J
%{pu(%j (u, —u)]+%{p v(%} (u, —u)} =

_(ij%( . u)_{ijji ou
L) & PU = Pelle L) o ,uay .

When the previous equation, as with incompressible
fluid, is multiplied by dy and integrated
perpendicularly to the boundary layer from the inner
(y=0) to the outer edge of the boundary layer

(y > ©) we will obtain an equation in the form of a
sum of integrals:

b[ % {pu(%}f (u, —u)} dy +
© J
+ !). %{pv(%j (ue—u)} dy =

Oorjdue CrY o ou
= | |=| —(pu—pu)dy— | | = | —| pg— |dy.
{(J <5 (Pu=pete)dy {(J 2“2 )2

Taking into consideration the possibility of changing the
order of the two operations - integration and
differentiation, and bearing in mind the boundary
conditions (1), the previous equation can be written as:

© J J
%l | pu[zj (u;u)dy}—pwvw [z) e =
0

r jdue < N ou
=(zj Fn I(Pu—Pe“e)dy+(zj #5 R
0 »=0

In order to obtain the simplest form of the momentum
equation, which would be formally the same as the
corresponding momentum equation in incompressible
fluid, it is necessary, for further solution of the integrals
in the equation (6), to introduce new variables instead of
physical coordinates x and y. The methodology of
introduction and the necessity of these transformations
are explained in details in [7]. Since this paper studies
the axisymmetrical flow of dissociated gas, a new
longitudinal variable s(x) and a new transversal

(6)

variable z(x, y) are introduced in the form of relations

1 * P\
S(x) = J- Pw Hy [_j dx,
Po Ho L
7
1 r j oy ( )
2(ny)= — (—j [ pdv
po \L)

In the transformations (7), py and p, denote arbitrary

known values of the density and dynamic viscosity at a
certain point of the boundary layer, while p,, and g,

are the given values of these quantities at the inner edge

FME Transactions

of the boundary layer. Krivtsova used these
transformations in her studies ([10] for j =0 and [11]

for j#0), for the case of a nonporous contour of the
body within the fluid.

We should point out that due to the factor (r/ L)2
and r/L (for j=1), these new previous variables (7)

also contain Mangler-Stepanov's transformations [8].
Otherwise, transformations (7) without these factors are
known in the literature as Dorodnicin's transformations
modified by Lees [10].

Since, in some terms of the equation (6), the
integration is performed transversally to the boundary
layer, the variable z changes only due to the change of
the coordinate y (for any x). Therefore, by means of the
newly introduced variables (7), the equation (6) is
brought to the form:

J
i(uezzl*"‘)ﬂted&A*=(Lj —PwPulle |
ds ds L) py ds/dr ©
2j
J{Lj % ”ei, Uy =11,(s),
L) py ds/idx A

in which the conditional displacement thickness A”(s),

conditional momentum loss thickness A™(s) and
nondimensional friction function {(s) are determined in
the form of the known expressions

A*(S): JOO [&_ljdz’

0 P U
A (s) = I L [l_lj dz, 9)
o Ue u,
{(s)z{ a(u/ui*) :l
o(z/A4™)

After differentiation and multiplication of the equation
(8) by 24™ /vqu? (ug/po =Vvo) » we will obtain the
equation:

2 2
A" | 2w A" [2+A*]_

(10)
2,2 vy uh”
ue  (r/LY U Vo

When, as with homogenous or electroconductive liquid
or other cases of compressible fluid flow, we introduce
the parameter of the form f and widely accepted
notations for physical quantities in the theory of the
boundary layer:
A **2
f=hi=u, Z%=f(s), 2" =2,
o an
A *

sk

H= . () =du,/ds),
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the equation (10) can be written in its final form

ﬁ:i . (12)
ds u,

In the obtained momentum equation, the characteristic
function of the boundary layer F,, is determined as

sk
wd K3

F,;=2 (2+H)
ot [5 * f]+(/L)J Vo o Hw

For j =0, this function is the same as the function Fy,

at the planar flow [7]. In the case of a boundary layer
flow along a nonporous wall (v,, =0), the expression

for the characteristic function F,; comes down to the
same form as the known expression [2], which
corresponds to incompressible fluid flow (F,; =F).

Furthermore, by means of (11), the momentum equation
(12) can be written in its two forms

d u' ul A F
& _tep tep A _Melu (r_p (12
ds u, u, A ue 2f

They are formally the same as the corresponding forms
of this equation for incompressible fluid (where ' stands
for a derivation per s).

If with the axisymmetrical flow of compressible
fluid, we define the porosity parameter in the following
way:

A**
Aee b 2w 4 Mo (=1, (15)
(r/LY Vo Hy

the characteristic boundary layer function F,, can be
written as the final expression:

Fp=2[ ¢-(2+H)f]-24. (16)

It is obvious that the obtained expression (16) is
formally the same as the corresponding expression for
the characteristic function of incompressible fluid [2].
The defined parameter characterizes injection or
ejection of the dissociated gas in the boundary layer.
The expression for this parameter can be written in the

form of
dkk

1 A
A:—&V —_—=

Hy " (r/L)j Yo )

1 .
VW = at Vw — VW(S)’ (=D,
Hy (V/L)/

where V,,(s) can be called the conditional injection
velocity.

4. INTRODUCTION OF A SET OF POROSITY
PARAMETERS OF LOITSIANSKII TYPE

As already stated in the Introduction, the general
similarity method is based on the use of the appropriate
sets of parameters of Loitsianskii type. Therefore, in this
section we will define a set of porosity parameters at the

66 = VOL. 35, No 2, 2007

axisymmetrical flow along a porous contour of the

ek **2
rotating body. Because of the relation Z =4"" /v,
the first, i.e. the primary porosity parameter can also be
defined by the expression

1/2

=4 (s) (7

sk

AN=—- L 7

from which we get
ok AZVO

V4
Vi

Based on the previous relation and the momentum
equation  (12)  written in the form  of

F, . o
% ( A2v0 / V»% )=—2L , and after the differentiation,

e
it is relatively easy to obtain the equation

O R R
dsds ufi|2 o

Accepting the second addend in the brackets of the
previous equation as a new parameter ,,

V’ 372
My=— u, 27,

<o

this equation reduces to:

A 1

ue
Ye S F, At A=
u;‘flds SFau b =n

If by a usual Loitsianskii procedure, as with other fluid
flow problems, the parameter A, is differentiated per
the variable s, we will get the equation

u—ff d/lz [fl
u

e

otjAZ +4 =1,

in which A; denotes the third porosity parameter

determined by the expression

By differentiation of the parameter A3 per the variable
s we will obtain the corresponding equation

Efld@ (2f1 ]A3+A4 .

where

represents a new parameter.
According to the shown procedure, it is clear that the
general porosity parameter /A (s) can be written in the

form of the expression

FME Transactions
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k-1/2
k=t W] Z%, (k=1,2,3,..) (18)

0

Furthermore, each of the parameters of the previous set,
as concluded in our analysis, satisfies a recurrent
differential equation

u, dA
e f ke
Ue ds 19)
={(k=1)f; +[@k=1)/ 2] Fpy } Ay + Ay -
This equation can be also written as

u

dA
e k
—_—= s 20
éfl i Xk (20)

where
Ak ={e =D fi +[2k=1)/2 |Fpy | A+ Ay . (21)

At the end of this section, it should be pointed out that
the set of porosity parameters A; (18), defined in this
paper is formally the same as the corresponding set of
parameters in the case of the incompressible fluid flow
[2]. The corresponding recurrent relations (19) also have
the same form. Obviously, the porosity parameters
given in this paper are a function of a newly introduced
variable s instead of the physical variable x (which is the
case with incompressible fluid flow). Defining of a set
of porosity parameters (18) creates a possibility to apply
the general similarity method to the considered flow
problem, i.e. to bring the governing equations to the so
called generalized form and to solve them numerically.

5. TRANSFORMATION OF THE GOVERNING
EQUATIONS

Transformations of the variables (7) should be applied
to the boundary layer equations system of the
dissociated gas flow on the rotating bodies, i.e. to the
continuity equation (3) and to the dynamic and energy
equations of the system (1) with the corresponding
boundary conditions. As with other flow problems, a
stream function w(x,y) is introduced. The form of the

continuity equation (3) suggests that the stream function
should be introduced by the following relations:

P oy P L Oy
p (r/Ly O P (r/Ly O

However, after new variables (7) have been introduced,
the function [y (x,y) = w(s,z)] should be defined in

accordance with the equations:

(22)

J
Y - uﬁwﬁ(i) __%v
Pw Hyw (V/L) J Ox £o L Os
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These relations also come from the continuity equation
of this compressible fluid flow problem. Note that the
second relation (22) for j=0, comes down to the

relation Krivtsova once used in her investigations of the
planar dissociated gas flow [10].

Changing the variables and using the relation (22),
the governing equation system reduces to:

2
u d&‘*‘\/o E[Q_a l//]’

0z 0sOz

o a2 p Cds oz

Oy oh 0y oh__pe, du. Oy

0z 0s Os Oz p Cds oz

o’y oo oh

+v, — [tV — | = U+DH)— |, 23
oQ[ 622] an{Pr( )az (23)
Wy, W__ M, L 5y
0z Os o (r/LY
h=h, for z=0,
‘2—"’—>ue(s), h—>h(s) for z—ow.

zZ

In the obtained equations, the nondimensional
function Q is determined as

o="LHK  0=1 for z=0,

Pw Hyw (24)

Q:M:Q(s) for z—oo.

w ILIW
6. CONCLUSION

Based on the obtained equations (23), we can draw
some conclusions important for further investigation of
the boundary layer fluid flow. They are:

e The obtained equations (23) are completely the
same as the equations obtained in [10] for the planar
problem of the dissociated gas flow. This conclusion is
expected because it was made possible by the

transformations (7) that contain the factors (r/ L)2 and

r/ L. Obviously, the boundary conditions are different.

e The transformed dynamic equation (23) has
almost the identical form as the corresponding equation
for the case of the incompressible fluid flow [2]
expressed by means of the stream function w(x,y). In

the case of an isothermal flow of incompressible fluid
(p=const., u=const., Q=1) these equations are
identical.

¢ Due to the boundary conditions at the outer edge
of the boundary layer (0w /0s=-V,, for z=0), by
dividing the stream function into two addends, these
conditions can be brought to a form that applies to a
nonporous wall of the body within the fluid (as is the
case with incompressible fluid [2]).

o This paper defines a set of porosity parameters
for the case of the dissociated gas flow along rotating
bodies (j=1) which enables application of the general

similarity method (Saljnikov's version) to this compli-
cated compressible fluid flow problem.

VOL. 35, No 2, 2007 = 67



In conclusion, the essential contribution of this paper
lies in defining the primary porosity parameter A (15),
obtained from the momentum equation (13) derived in
the paper, as well as in introduction of the
corresponding set of parameters A; (18). This set of

parameters is a generalization of the already known set
of parameters of Loitsianskii type for the case of
incompressible fluid flow along a porous contour.

Finally, we should especially point out that in our
further investigations we will use the introduced set of
porosity parameters (18) with the aim to apply the
general similarity method to the considered problem of
compressible fluid flow, i.e., to solve the generalized
equations numerically.

REFERENCES

[1] Dorrance, W. H.: Viscous hypersonic flow, theory
of reacting and hypersonic boundary layers, Mir,
Moscow, 1966 (in Russian).

[2] Loitsianskii, L. G.: Liquid and gas mechanics,
Nauka, Moscow, 1978. (in Russian).

[3] Saljnikov, V., Dallmann, U.: Verallgemeinerte
Ahnlichkeitslosungen — fiir dreidimensionale,
laminare, stationdre, kompressible Grenzschicht-
stromungen an schiebenden profilierten Zylindern,
Institut fiir Theoretische Stromungsmechanik,
DLR-FB 89-34, Géttingen, 1989.

[4] Borici¢, Z., Nikodijevi¢, D., Milenkovi¢, D.:
Unsteady MHD boundary layer on a porous
surface, Facta Universitatis, Series "Mechanics,
Automatic Control and Robotics”, Vol. 1, No. 5,
pp. 631-643, 1995.

[5] Obrovié, B., Savi¢, S.: Dissociated gas flow in the
boundary layer in the case of a porous contour of
the body within fluid, Facta Universitatis, Series
"Mechanics, Automatic Control and Robotics” Vol.
3, No. 15, pp. 989-1000, 2003.

[6] Savi¢, S., Obrovi¢, B.: The influence of variation of
electroconductivity on ionized gas flow in the
boundary layer along a porous wall, Theoret. Appl.
Mech., Vol. 33, No. 2, pp. 149-179, 2006.

68 = VOL. 35, No 2, 2007

[7] Obrovié, B., Savi¢, S.: On the transformations of
variables in the solution of compressible boundary
layer equations, FME Transactions, Vol. 32, No. 1,
pp. 19-24, 2004.

[8] Schlichting, H.: Grenzschicht-theorie, Verlag G.
Braun, Karlsruhe, 1974 (in Russian).

[9] Loitsianskii, L. G.: Laminar boundary layer,
Fizmatgiz, Moscow, 1962 (in Russian).

[10]Krivtsova, N. V.: Parameter method of solving of
the laminar boundary layer equations with axial
pressure gradient in the conditions of balance
dissociation of the gas, Engineering-Physical
Journal X (2), pp. 143-153, 1966 (in Russian).

[11]Krivtsova, N. V.: Laminar boundary layer in the
equilibrium dissociated gas at an arbitrary
distribution of the outer velocity, Liquid and gas
mechanics, No. 10, pp. 106-112, 1966 (in Russian).

[12]Kosti¢, S. T.: Multiparametric boundary layer
method on thin rotating bodies, Liquid and gas
mechanics, No. 6, pp. 22-27, 1991 (in Russian).

UMMNYJNCHA JEOHAYUHA TrPAHUYHOI CNNOJA
HA OBPTHUM TENUMA NPU CTPYJAKY
ONCOLUMPAHOI FACA NMOPE[ NOPO3HE KOHTYPE

BpaHko O6poBuh, Cno6ogaH CaBuh

Hcrpakyje ce TaMUHApHU CTAI[MOHAPHU IPAHUYHU CIIO]
Ha OOpPTHUM TeNIUMa Cca TOPO3HOM KOHTYPOM IIpH
OCHOCHUMETPUYHOM CTpYjamy CTHILBUBOT (piayuna. Peu
je 0 cTpyjamy JAMCOIMpAHOr raca Yy YCIOBHMa
paBHOTEXHE JAucouyjauuje. Y paay je H3BEIcHA
HMITYJICHA jeIHAYMHA pa3MaTpaHoT MpodiieMa CTpyjamba.
Jlepunucan je OCHOBHM Mapamerap IIOPO3HOCTH a
3aTUM W OAroBapajyhu CKymn mapamerapa MOpO3HOCTH.
IToka3aHo je ma ce 3a pellaBamke pa3MaTpaHor
npobiieMa CTpyjama, IOcle YBOhema HEONMXOTHHX
CBPCHCXOJHUX TpaHCopMalmja, MOXe Ia NPUMEHH
METOJ]a YOIIITeHe CIUYHOCTH Yy Bep3uju B. H.
CaJpHHKOBaA.
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